Let
(4.781)x=(0.4731)y=10z=k
∴(2.381)x=k
xlog(4.781)=logk
x=logklog(4.781)
Similarly,
y=logklog(0.4781),z=logklog10
We have,
⇒−1x+1y+1z
⇒−1logklog(4.781)+1logklog(0.4781)+1logklog10
⇒−log(4.781)logk+log(0.4781)logk+log10logk
⇒−log(4.781)+log(0.4781)+log10logk
⇒−log(4.781)+log(4.781)logk
⇒0
Hence, this is the answer.