$ 4a+5b+9c=364a+5b+9c=36 $; ----(1)$7a+9b+17c=667a+9b+17c=66$;----(2)
⟹⟹ (multiply 11st equation by 22)
$8a+10b+18c=728a+10b+18c=72$; $7a+9b+17c=66$7a+9b+17c=66;
Then subtract equations:
$a+b+c=(8a+10b+18c)−(7a+9b+17c)=6$
If 4a+5b+9c=36 and 7a+9b+17c=66 then find the value of a+b+c