We have,
4cosθ+3sinθ=5
Then,
4cosθ+3sinθ=5
4cosθ+3√1−cos2θ=5
3√1−cos2θ=5−4cosθ
Squaring both side and we get,
9(1−cos2θ)=(5−4cosθ)2
⇒9−9cos2θ=25+16cos2θ−40cosθ
⇒25+16cos2θ−40cosθ−9+9cos2θ=0
⇒25cos2θ−40cosθ+16=0
⇒(5cosθ)2−2×5cosθ×4+42=0
⇒(5cosθ−4)2=0
⇒5cosθ−4=0
⇒5cosθ=4
⇒cosθ=45
Put the value of given equation and we get,
4cosθ+3sinθ=5
⇒4×45+3sinθ=5
⇒165−5=3sinθ
⇒3sinθ=16−255
⇒sinθ=−915
⇒sinθ=−35
Then,
tanθ=sinθcosθ
tanθ=−3545
tanθ=−34
Hence, this is the answer.