The correct option is C 169
Given
−4≤8x−2≤4⇒−4+2≤8x−2+2≤4+2⇒−2≤8x≤6⇒−14≤x≤34
⇒0≤x2≤916
⇒∞>1x2≥169
Hence, the minimum value of 1x2=169
Alternate Solution:
x∈[−14,34]
∴ whenever 0 lies in the interval while taking the reciprocal, we break it into two parts such that 0 can be excluded.
∴1x only defined for [−14,0)∪(0,34]
→x∈[−14,0)⇒1x∈(−∞,−4]⇒1x2∈[16,∞) ⋯(1)→x∈(0,34]⇒1x∈[43,∞)⇒1x2∈[169,∞) ⋯(2)
From (1) and (2)
∴1x2∈[169,∞)
So, the least value of 1x2=169