The correct option is A x=e
Given equation is
4log2logx=logx−(logx)2+1
Now, log2logx is meaningful if logx>0.
Since 4log2logx=22log2logx=(2log2logx)2=((logx)log22)2[∵alogbc=clogba]
=(logx)2 (∵alogax=x,a>0,a≠1)
So the given equation reduces to
2(logx)2−logx−1=0.
⇒logx=1,logx=−12.
But logx>0
Hence, logx=1, i.e.,x=e