If 4tanθ=3, evaluate 4sinθ-cosθ+14sinθ+cosθ-1
Solution:
Given expression is
4sinθ-cosθ+14sinθ+cosθ-1
Dividing and multiplying by cosθ in numerator and denominator,
=4sinθ-cosθ+1cosθ4sinθ+cosθ-1cosθ=4sin(θ)cos(θ)-cos(θ)cos(θ)+1cos(θ)4sin(θ)cos(θ)+cos(θ)cos(θ)-1cos(θ)
=4tanθ-1+secθ4tanθ+1-secθ.........(i)∵tan(θ)=sin(θ)cos(θ)&sec(θ)=1cos(θ)
Using trigonometric identity: sec2θ=1+tan2θ
⇒sec2θ=1+342∵4tanθ=3ortanθ=34(Given)⇒sec2θ=2516⇒secθ=±2516⇒secθ=±54
We will solve for both the values of secθ=54or-54.
Putting values of secθ=54andtan(θ)=34 in expression (i),
⇒434-1+54434+1-54=12-4+512+4-5=1311
Putting values of secθ=-54andtan(θ)=34 in (i)
⇒434-1-54434+1+54=12-4-512+4+5=321
Final answer: If4tanθ=3,value of 4sinθ-cosθ+14sinθ+cosθ-1=1311or321.
Evaluate: {(13)−3−(12)−3}÷(14)−3