If 4sin2θ+2(√3+1)cosθ=4+√3, then the general solution is
A
nπ±π3,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ±π6,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2nπ±π3,n∈Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2nπ±π4,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2nπ±π3,n∈Z Given: 4sin2θ+2(√3+1)cosθ=4+√3 ⇒4−4cos2θ+2(√3+1)cosθ=4+√3⇒4cos2θ−2(√3+1)cosθ+√3=0⇒4cos2θ−2cosθ−2√3cosθ+√3=0⇒(2cosθ−√3)(2cosθ−1)=0⇒(2cosθ−√3)(2cosθ−1)=0⇒cosθ=√32 or cosθ=12∴θ=2nπ±π6 or θ=2nπ±π3,n∈Z