If 4 tan θ=3, evaluate (4sinθ−cosθ+14sinθ+cosθ−1) OR If tan 2A = cot (A−18o), where 2A is an acute angle, find the value of A.
Open in App
Solution
Given, 4 tan θ=3, ⇒tanθ=34(=PB)
P = 3K, B = 4K, Now, H = √P2+B2 =√(3K)2+(4K)2 =√9K2+16K2 =√25K2 ⇒H=5K ∴sinθ=PH=3K5K=35 and cosθ=BH=4K5K=45 Now, 4sinθ−cosθ+14sinθ+cosθ−1=4×35−45+14×35+45−1
=(125−45+1)(125+45−1) =(12−4+55)(12+4−55)
=13/511/5 =1311 OR Given, tan 2A = cot (A−18o) ⇒cot(90o−2A)=cot(A−18o)[∵tanθ=cot(90o−θ)] ⇒90o−2A=A−18o ⇒90o+18o=A+2A ⇒180o=3A ⇒A=108o3 ⇒A=36o