The correct option is C 3x+15y+20=0
Let (a,b) is the third vertex
∴ 12∣∣∣−4 1 a −40 −1 b 0∣∣∣=4
⇒ |4+a+b+4b|=8
⇒ a+5b+4=±8 ⇒ a+5b=4 or a+5b=−12 ⋯(A)
Now,
Centroid(x,y)≡(a−4+13,b−1+03)
⇒ (x,y)≡(a−33,b−13)
⇒ (a,b)≡(3x+3,3y+1)
putting values of a and b in equation A
∴ (3x+3)+5(3y+1)=4 ⇒ 3x+15y+4=0
or,
(3x+3)+5(3y+1)+12=0 ⇒ 3x+15y+20=0