If 4a2+9b2+16c2=2(3ab+6bc+4ca), where a,b and c are non - zero numbers, then a,b and c are in
AP
GP
HP
None of these
Explanation for the correct option:
Given 4a2+9b2+16c2=2(3ab+6bc+4ca)
⇒ 2(4a2+9b2+16c2)=2×2(3ab+6bc+4ca)
⇒4a2+4a2+9b2+9b2+16c2+16c2-12ab-24bc-16ca=0
⇒ (2a-3b)2+(3b-4c)2+(4c-2a)2=0
Now we have ,
2a-3b=0,3b-4c=0,4c-2a=0
⇒2a=3b=4c=x
a=x/2,b=x/3,c=x/4
1c+1a=6x
⇒1c+1a=2b
So a,b,c are in HP.
Hence option C is the answer.