The correct options are
A f(x)=logex
C f(e2x) is continuous on [−1,1]
4f(x)−f(1x)=5logex ⋯(1)
Replace x by 1x
4f(1x)−f(x)=5loge(1x)
⇒4f(1x)−f(x)=−5logex ⋯(2)
4×(1)+(2)
⇒16f(x)−f(x)=15logex
⇒f(x)=logex
f(ex)=x⇒f′(ex)=e−x
f(e2x)=2x which is a polynomial, so continuous everywhere.