Let the circle be (x−a)2+(y−b)2=r2.
Condition of tangency gives
(al+bm+1)√l2+m2)=r
or (al+bm)2+1+2(al+bm)=r2(l2+m2)
or l2(a2−r2)+m2(b2−r2)+2ablm+2al+2bm+1=0.....(1)
Compare with 4l2−5m2+6l+1=0
∴a2−r2=4,b2−r2=−5,ab=0,
2a=6,2b=0
∴a=3,b=0,∴r2=5
Hence the circle is (x−3)2+y2=5
or x2+y2−6x+4=0.