The correct option is D 15616
Given, 4x - 5z = 16 and xz = 12
Since, (a−b)2=a2−2ab+b2
⇒(4x−5z)2=16x2−40xz+25z2
put 4x - 5z = 16 and xz = 12
⇒(16)2=16x2−40(12)+25z2
⇒16x2+25z2=256+480
⇒16x2+25z2=736 .....(1)
Given, 64x3−125z3=(4x)3−(5z)3
Since,a3−b3=(a−b)(a2+b2+ab)
⇒(4x)3−(5z)3=(4x−5z)(16x2+25z2+20xz)
By putting 4x - 5z = 16 , xz = 12 and using (1). we get,
⇒(4x)3−(5z)3=(16)(736+20×12)
⇒(4x)3−(5z)3=(16)(976)
⇒(4x)3−(5z)3=15616
Option D is correct.