If −5 is a root of the quadratic equation 2x2+px−15=0 and the quadratic equation p(x2+x)+k=0 has equal roots, find the value of k.
Since, −5 is a root of the quadratic equation 2x2+px−15=0, then,
⇒2(−5)2+p(−5)−15=0
⇒50−5p−15=0
⇒5p=35
∴p=7
Hence, p(x2+x)+k=0 becomes,
⇒7x2+7x+k=0
Since, this quadratic equation has equal roots, therefore,
⇒D=b2−4ac=0
⇒(7)2−4(7)(k)=0
⇒28k=49
∴k=74