If 5 P(4,n)= 6 P (5,n-1), find n.
We have,
5P (4,n)= 6, (5,n-1)
⇒5×1(4−n)!=6×5![5−(n−1)]!
[∵npr=n!(n−r)!]
⇒5×4!(4−n)!=6×5×4![5−n+1]!
⇒1(4−n)!=6(6−n)(6−n−1)(6−n−2)!
⇒1(4−n)!=6(6−n)(5−n)(4−n)!
⇒(6−n)(5−n)(4−n)!(4−n)!=6
⇒(6−n)(5−n)=6
⇒30−6n−5n+n2=6
⇒n2−11n+30=6
⇒n2−11n+24=0
⇒n2−8n−3n+24=0
⇒n(n−8)−3n+24=0
⇒(n−8)(n−3)=0
⇒n−3=0
[∵n≤4∴n≠8]
⇒n=3
Hence, n=3