If 5tanθ=4, then the value of (5sinθ − 4cosθ)(5sinθ + 4cosθ) is
0
If we express the given equation in the form of tanθ, then it will be easier to solve.
Hence, dividing both the numerator and denominator by cosθ we get,
(5sinθ−4cosθ)(5sinθ+4cosθ)
=(5sinθ−4cosθ)cosθ(5sinθ+4cosθ)cosθ
=5tanθ−45tanθ+4
=4−44+4=0 [ Given: 5tanθ=4 ]
∴(5sinθ−4cosθ)(5sinθ+4cosθ)=0