If 5tanθ=4, then (5sinθ-3cosθ)(5sinθ+2cosθ) is
Finding the value of (5sinθ-3cosθ)(5sinθ+2cosθ) :
Given that
5tanθ=4,⇒tanθ=45
Now ,(5sinθ-3cosθ)(5sinθ+2cosθ)
Dividing the numerator and denominator by cosθ
=(5tanθ–3)(5tanθ+2)=[5(45)–3][5(45)+2]=(4–3)(4+2)=16
Hence the value of (5sinθ-3cosθ)(5sinθ+2cosθ) is 16.