Let the sides of the triangle be a=5, c=12 and b=13.
a2+c2=(5)2+(12)2
=25+144
=169
b2=(13)2
=169
This shows that a2+c2=b2.
If the sum of square of two sides of a triangle is equal to the square of the third side, then the triangle is a right angled triangle. (Pythogoras' Theorem)
∴ the given triangle is a right angled triangle.
To find the altitude on the hypotenuse (h)
We have,
h2+x2=52 −(1)
h2+(13−x)2=122 −(2)
Subtracting (1) from (2):
(13−x)2−x2=122−52
169−2∗13∗x+x2−x2=144−25
169−119=26x
x=5026
Substituting in (1)
h2+(5026)2=25
h2=25−502262
h2=16900−2500262
h2=14400262
h2=(12026)2
h=(12026)