If 5(tan2x−cos2x)=2cos2x+9, then the value of cos4x is
Finding the value of cos4x :
Given that
5(tan2x−cos2x)=2cos2x+9,5sec2x–5=7cos2x+9
Let , cos2x=t
⇒(5t)=9t+12⇒9t2+12t–5=0⇒t=13ast≠–53⇒cos2x=13,(cos2x=2cos2x–1=-13)⇒cos4x=2cos22x–1=(29)–1=–79
Hence, the value of cos4x is -79
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: