If (666...ntimes)2+(8888...ntimes)=(4444...Ktimes)then K is
Step 1. Expand (666...ntimes) and solve it:
666…ntimes)=6+60+600+..nterms=6(1+10+100+….n)=6(10n-1)9=(23)(10n-1)
Step 2. Expand (8888...ntimes) and solve it:
(8888…ntimes)=8+80+800+..nterms=8(1+10+100+….n)=8(10n-1)9=(89)(10n-1)
Step 3. Put the values of (666...ntimes) and (8888...ntimes) in given equation, we get
(666…ntimes)2+(8888…ntimes)=(23)2(10n-1)2+(89)(10n-1)=(49)(10n-1)2+(89)(10n-1)=(49)(10n-1)[(10n-1)+2]=(49)(10n-1)[(10n+1]=(49)(102n-1)=4(1+10+100+…2nterms)=4+40+400+…2nterms=444….ktimes(Given)
∴K=2n
Assume X, Y, Z, W and P are matrices of order, and respectively. If n = p, then the order of the matrix is
A p × 2 B 2 × n C n × 3 D p × n