wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (666...ntimes)2+(8888...ntimes)=(4444...Ktimes)then K is


Open in App
Solution

Step 1. Expand (666...ntimes) and solve it:

666ntimes)=6+60+600+..nterms=6(1+10+100+.n)=6(10n-1)9=(23)(10n-1)

Step 2. Expand (8888...ntimes) and solve it:

(8888ntimes)=8+80+800+..nterms=8(1+10+100+.n)=8(10n-1)9=(89)(10n-1)

Step 3. Put the values of (666...ntimes) and (8888...ntimes) in given equation, we get

(666ntimes)2+(8888ntimes)=(23)2(10n-1)2+(89)(10n-1)=(49)(10n-1)2+(89)(10n-1)=(49)(10n-1)[(10n-1)+2]=(49)(10n-1)[(10n+1]=(49)(102n-1)=4(1+10+100+2nterms)=4+40+400+2nterms=444.ktimes(Given)

K=2n


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Notations of Combinations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon