Consider the given equation.
6sin−1(x2−6x+12)=2π …….. (1)
sin−1(x2−6x+12)=π3
x2−6x+12=sinπ3
x2−6x+12=√32
2x2−12x+(24−√3)=0 …….. (2)
We know that
x=−b±√b2−4ac2a
Therefore,
x=12±√144−4×2×(24−√3)4
x=12±√144−192+8√34
x=12±√8√3−484
x=6±√2√3−122
Hence, the value of x= 6±√2√3−122.