7103=7(7102)=7(72)51=7(49)51
=7(50−1)51=7[51C0(50)51−51C1(50)50+51C2(50)49−........+51C50(50)−51C51(1)]
=7[51C0(50)51−51C1(50)50+51C2(50)49−........+51C50(50)−51C51(1)]
=7[51C0(50)51−51C1(50)50+51C2(50)49−........+51C50(50)−1]
=7(50)[51C0(50)50−51C1(50)49+51C2(50)48−........+51C50(1)]−7
=25k−7, where k=7(2)[51C0(50)50−51C1(50)49+51C2(50)48−........+51C50(1)]
=25k+(18−25)=25(k−1)+18
Hence remainder is 18