wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 7α=2π, then find the absolute value of secα+sec2α+sec4α.

Open in App
Solution

Given, 7α=2π,

The absolute value of,

secα+sec2α+sec3α
=|secα+sec2α+sec3α|
=sec2π7+sec22π7+sec32π7

=∣ ∣ ∣ ∣1cos2π7+1cos22π7+1cos32π7∣ ∣ ∣ ∣

We have the formula cos2A=2cos2A1 and cos4A=12(2sinAcosA)2

=∣ ∣ ∣ ∣1cos2π7+12cos22π71+112(2sin2π7cos2π7)2∣ ∣ ∣ ∣

cos2π7=0.2225 and sin2π7=0.9749

Substituting the values,

=10.2225+12(0.2225)21+112(2(0.9749)(0.2225))2

=|4.49431.1093+1.6036|=|4|

The absolute value of, secα+sec2α+sec3α is 4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon