The correct option is C (−1,1)
−7≤x2+8x+5≤14
⇒−7≤x2+8x+16−11≤14
⇒4≤(x+4)2≤25
When 4≤(x+4)2
⇒x+4∈(∞−2]∪[2,∞)⇒x∈(∞−6]∪[−2,∞)⋯(1)
When (x+4)2≤25
⇒−5≤x+4≤5
⇒−9≤x≤1⇒x∈[−9,1]⋯(2)
From (1) and (2), we get
x∈[−9,−6]∪[−2,1]
Hence, from the given options (−1,1) and (−8,−6) are correct.