If 7tanθ=4, then (7sinθ−3cosθ)(7sinθ+3cosθ)=?
(a) 17
(b) 57
(c) 37
(d) 514
Correct option is (a) 17
Given: 7tanθ=4
⇒tanθ=47
Consider, (7sinθ−3cosθ)(7sinθ+3cosθ)
Dividing numerator and denominator by cosθ
=7sinθ−3cosθcosθ7sinθ+3cosθcosθ
=7tanθ−37tanθ+3
=7(47)−37(47)+3
=4−34+3
=17
∴(7sinθ−3cosθ)(7sinθ+3cosθ)=17