Let the vertices of the parallelogram be A(7,3),B(6,1),C(8,2) and D(p,4)
We know that the diagonals of a parallelogram bisect each other.
∴ The midpoints of the diagonal AC and the diagonal BD coincide.
Hence (7+82,3+22)=(6+p2,1+42)
⇒(6+p2,52)=(152,152)
Equating the x-coordinates, we get
6+p2=152
∴ p=9