If 7Cr≥3.7Cr−1, then minimum value or r is
7Cr≥3⇒7Cr−1⇒7!(7−r)!r!≥3x7!(7−r+1)!(r−1)!⇒7!(7−r)!(r−1)![1r−37−r+1]≥0⇒7!(7−r)!(r−1)![7−r+1−3r(r)(7−r+1)]≥0⇒7!(8−4r)(7−r+1)!(r)!≥0⇒7!(4)(2−r)(8−r)!(r)!≥0⇒2−r≥0⇒r=2
It is the least value
Hence the correct answer is 2