The correct option is
A 8
8 cosx+15sinx=15 ........ (1)
and cosx≠0, then 8 sinx−15cosx=?
squaring and adding both the equations, we get,
(8cosx+15sinx)2+(8sinx−15cosx)2
64(cos2x+sin2x)+225(cos2x+sin2x)=289
(8sinx−15cosx)2=289−152=64
∴8sinx−15cosx=±8
∴8sinx−15cosx=8 ........ (2)
∴8sinx−15cosx=−8 ...........(3)
Adding (1) and (2)
∴23sinx−7cosx=23 This relation is possible only if cosx=0 but given condition is cosx≠0
So relation (2) is rejected and relation (3) is accepted.
This means option A is correct.