wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 9^n×3^2×3^n-(27)^n÷3^3m×2^3=1/27,prove that m=1+n.

Open in App
Solution

Given that, ( 9^n x 3^2 x (3^-n/2)^-2 - 27^n) /( 3^3m x 2^3) = 1/27
⇒ (3^2n x 3^2 x { 3^-(-2n/2) } - 3^3n )/ 3^3m x 2^3 = 1/(3^3)
⇒ (3^2n x 3^2 x {3^n} - 3^3n )/ 3^3m x 2^3 = 3^(-3)
⇒ ( 3^3n x 3^2 - 3^3n )/ 3^3m x 2^3 = 3^(-3)
⇒ 3^3n[ 3^2 - 1] / 3^3m x 2^3 = 3^(-3)
⇒ 3^3n[ 9 - 1 ] /3^3m x 8 = 3^(-3)
⇒ 3^3n x 8 /3^3m x 8 = 3^(-3)
⇒ 3^(3n-3m) = 3^(-3)
comparing powers on both side, we get
3n - 3m = -3
⇒ 3(n-m) = -3
⇒ (n-m) = -1
or m-n = 1
Hence proved


flag
Suggest Corrections
thumbs-up
20
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polynomials in One Variable
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon