If a0,a1,a2,............,an−1 are nth roots of unity, then ak = cos 2kπn + i sin 2kπn where 0≤k≤n−1.
Also then Value of 2n−1sin(πn)sin(2πn).........sin(n−1nπ)is
n
a0,a1,a2,.............an−1 are nth roots of unity, then they are roots of
xn - 1 = (x−a0)(x−a1)..............(x−an−1) and a0 = 1
(x−a1)(x−a2)..............(x−an−1) = xn−1x−1 = 1 + x + x ........+ xn−1
Put x = 1 then (1−a1)(1−a2).........(1−an−1) = n
We have for 1≤k≤n−1
|1−ak|2 =[1−cos2kπn]2 + sin22kπn
= 2[1−cos2kπn] = 4sin2kπn
|(1−a1)(1−a2).............(1−an−1)| = n
⇒ 2n−1sin(πn)sin(2πn)............sin(n−1nπ) = n