The correct option is
A True
Given a0, a1, a2...........a2n are coefficients of x in ascending order.
Thus, we can write,
(1+x+x2)n=a0+a1x+a2x2+.........+anxn+..............+a2nx2n (1)
1) Put x=−1 in equation (1), we get,
(1+(−1)+(−1)2)n=a0+a1(−1)+a2(−1)2+.........+a2n(−1)2n
(0+1)n=a0−a1+a2−a3+.........+a2n
∴1=a0−a1+a2−a3+.........+a2n (2)
2) Put n=−1x in equation (1), we get,
(1+(−1x)+(−1x)2)n=a0+a1(−1x)+a2(−1x)2+.........+a2n(−1x)2n
∴(1−1x+1x2)n=a0−a1x+a2x2+.........+a2nx2n
Multiplying both sides by (1+x+x2)n, we get,
(1+x+x2)n(1−1x+1x2)n=(1+x+x2)n[a0−a1x+a2x2+.........+a2nx2n]
∴(1+x+x2)n(1−1x+1x2)n=[a0+a1x+a2x2+......+a2nx2n][a0−a1x+a2x2+.........+a2nx2n]
∴[(1+x+x2)(1−1x+1x2)]n=a02−a12+a22−a32+..........+a2n2
∴[(1+x+x2)(x2−x+1x2)]n=a02−a12+a22−a32+..........+a2n2
∴[((1+x2)+x)((1+x2)−x)x2]n=a02−a12+a22−a32+..........+a2n2
∴⎡⎣(1+x2)2−x2x2⎤⎦n=a02−a12+a22−a32+..........+a2n2
∴[1+2x2+x4−x2x2]n=a02−a12+a22−a32+..........+a2n2
∴[1+x2+x4x2]n=a02−a12+a22−a32+..........+a2n2 (3)
Consider Left Hand Side of equation (3) i.e. [1+x2+x4x2]n
Put x2=y in above equation, we get,
LHS=(1+y+y2y)n
∴LHS=(1+y+y2)nyn
From equation (1), we can write,
∴LHS=a0+a1y+a2y2+.........+anyn+..............+a2ny2nyn
∴LHS=a0yn+a1yyn+a2y2yn+.............+anynyn+..................a2ny2nyn
∴LHS=a0yn+a1yyn+a2y2yn+.............+an+..................a2ny2nyn
As entire RHS is constant, we have to consider constant term on LHS to equate with RHS.
From above equation, it is clear that only constant term in above equation is an
Thus, from equation (3),
a02−a12+a22−a32+..........+a2n2=an