if a0,a1,a2....be the coefficients in the expansion of (1+x+x2)n in ascending powers f(x) , then prove that : (r+1)ar+1=(n−r)ar+(2n−r+1)ar−1,(0<r<2n)
Open in App
Solution
Differentiating both sides (1) w. r. t. x we get n(1+x+x2)n−1(1+2x)=∑2nr=0rarxr−1 Multiply both sides by 1+x+x2 and replace (1+x+x2)nby∑2nr=0arxr we get n(2x+1)∑2nr=0arx=(1+x+x2)n−1∑2nr=0rarxr−1 Equating the coefficient of xr in both sides n[2ar−1+ar]=[(r+1)ar+1+rar+(r−1)ar−1] or (r+1)ar+1=(n−r)ar+(2n−r+1)ar−1 (0 < r < 2n )