If a>0 and A,B,C are variable angles of △ABC, such that atanA+2atanB+3atanC=7a, then the minimum integral value of tan2A+tan2B+tan2C=
Open in App
Solution
Let two vectors, →P=a^i+2a^j+3a^k and →Q=tanA^i+tanB^j+tanC^k
If θ is the angle between →P and →Q
then cosθ=→P⋅→Q|→P||→Q|=atanA+2atanB+3atanC√14a√tan2A+tan2B+tan2C=7a√14a√tan2A+tan2B+tan2C ∵cos2θ≤1⇒4914(tan2A+tan2B+tan2C)≤1⇒tan2A+tan2B+tan2C≥4914 ∴ minimum integral value of tan2A+tan2B+tan2C is 4.