If a>0 and ∫a0[f(x)+f(−x)]dx=∫a−aϕ(x)dx then one of the possible values of ϕ(x) can be
A
f(−x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Af(−x) Supposef(x)isanevenfunctionthen∫a0[f(x)+f(−x)]dx=∫a0[f(x)+f(x)]dx=2∫a0[f(x)]dx=∫a−aϕ(x)dxϕ(x)=f(x)andiff(x)isanoddfunctionthen∫a0[f(x)+f(−x)]dx=∫a0[f(x)−f(x)]dx=0=∫a−aϕ(x)dxϕ(x)isalsoanoddfunctionsopossiblevalueofϕ(x)=f(−x)