If a>0 and the equation ax2+bx+c=0 has two real roots α and β such that |α|≤1, |β|≤1, then
a+b+c≥0
a−b+c≥0
a+|b|+c≥0
a−c≥0
Given y=ax2+bx+c, a>0
As both the roots lie in the interval [-1,1], we have
y(−1)≥0,y(1)≥0⇒a−b+c≥0,a+b+c≥0⇒a+|b|+c≥0Also, αβ≤|αβ|=|α||β|≤1⇒ca≤1 or c≤ a or a−c≥0