Necessary Condition for an Extrema(Is a Function Differentiable at Boundaries)
If A >0, B >0...
Question
If A>0,B>0 and A+B=π6, then the minimum value of tanA+tanB is :
A
2√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2−√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√3−√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4−2√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D4−2√3 A+B=π6Lety=tanA+tanB=tanA+tan(π6−A)dydA=sec2A+sec2(π6−A)(−1)=sec2A−sec2(π6−A)dydA=0⇒sec2A=sec2(π6−A)⇒A=π6−A⇒A=π12=B Minimum value of tanA+tanB=2tan(π12)=2(2−√3)=4−2√3
OR, Since,A,B>0&A+B=π6⇒tanA,tanB>0 Using AM-GM inequality (AM≥GM) tanA+tanB2≥√tanA.tanB The equality is achieved when A=B ⇒A=B=π12 ∴ Minimum value of tanA+tanB=2tan(π12)=2(2−√3)=4−2√3