If a > 0, b > 0, c > 0 are positive read numbers in AP. If ax2+bx+c=0 has real roots then
∣∣√ac−√ca∣∣≥2√3
a,b,c are in AP
⇒2b=a+c
b2−4ac=(a+c2)2−4ac=a2+c2+2ac4−4ac=a2+c2−14ac4
real roots ⇒b2−4ac≥0⇒a2+c2−14ac≥0.⇒a2+c2≥14ac⇒ac+ca−2≥14−2==(√ac−√ca)2≥12or∣∣√ac−√ca∣∣≥2√3.