If A0=⎡⎢⎣2−2−4−1341−2−3⎤⎥⎦ and B0⎡⎢⎣−4−3−3101443⎤⎥⎦ Bn=adj(Bn−1),n∈N and I is an identity matrix order 3, then correct satement is/ are
A
Determinant of (A0+A20B20+A30+A40B40+....10terms) is equal to zero.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
B1+B2+....B49 is equal to 49 B0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
For a variable matrix X, the equation A0X=B0 will have no solution.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are A Determinant of (A0+A20B20+A30+A40B40+....10terms) is equal to zero. BB1+B2+....B49 is equal to 49 B0 C For a variable matrix X, the equation A0X=B0 will have no solution. A20=A0,B20=I So, Determinant of (A0+A20B20+A30+A40B40+....10terms) = Determinant of (A0+A0I+A0+A0I2+....10terms) =(A0+A0+.....10terms)=|10A0| =1000×∣∣
∣∣2−2−4−1341−2−3∣∣
∣∣=0
B20=I⇒B0=B−10 B1=adj(B0),adj(B0)=|B0|B−10=B0[As|B0|=1] ∴B1=B0 B2=adj(B1)=B0...soon So B1+B2+....+B49=49B0 A0X=B0⇒|A0||X|=|B0| |A0|=0and|B0|=1 0=1→ no solution.