If a > 0 , c > 0 , b = √ac , a≠1c≠1ac≠1n>1 prove that loganlogcn=logan−logbnlogan−logbn
Open in App
Solution
R . H . S =(1/logna)−(1/lognb)(1/lognb)−(1/lognc) =lognb−lognalognc−lognb) =logn(b/a)logn(c/d))⋅lognclogna =1⋅lognc(logna=loganlogcn [∵b=√ac⇒b2=ac⇒b/a=c/b]