If a=(3i+k)10&b=(2i+3j-6k)7,then the value of (2a-b).[(axb)×(a+2b)]is
-3
5
3
-5
Explanation for the correct option:
Finding cross product of vector:
Given, a=(3i+k)10&b=(2i+3j-6k)7
So,
(2a–b).[(axb)×(a+2b)]=(2a–b).[(axb)xa+(a×b)×2b)]=(2a–b).[(a.a)b–(b.a)a+2(a.b)b–2(b.b)a][∵a×(b×c)=a.cb-a.bc]{∵a.a=b.b=1anda.b=0}
Therefore,
=(2a–b)[1(b)–(0)a+2(0)b–2(1)a]=(2a–b)(b–2a)=–[4|a|2+4a.b-|b|2]=–[4–0+1]=-5
Hence, correct option is (D).
Let a⇀=2i-3j+4k,b→=7i+j-6k. If r→×a→=r→×b→,r→·(i+2j+k)=-3, then r→·(2i-3j+k) is equal to