If A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}, find
(i) A×(B∩C)
(ii) (A×B)∩(A×C)
(iii) A×(B∪C)
(iv) (A×B)∪(A×C)
(i) We have,
A={1,2,3},B={3,4} and C={4,5,6}
∴B∩C={3,4}∩{4,5,6}={4}
∴A×(B∩C)={1,2,3}×{4}
={(1,4),(2,4),(3,4)}
⇒A×(B∩C)={(1,4),(2,4),(3,4)}
(ii) We have,
A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}
∴A×B={1,2,3}×{3,4}
={(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)}
and
A×C={1,2,3}×{4,5,6}
= {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)}
(A×B)∩(A×C)={(1,4),(2,4),(3,4)}
(iii) We have,
A = {1, 2, 3}, B = {3, 4} and C = {4, 5, 6}
∴B∪C={3,4}∪{4,5,6}
= {3, 4, 5, 6}
A×(B∪C)={1,2,3}×{3,4,5,6}
={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)}
(iv) We have,
A={1,2,3},B={3,4} and C={4,5,6}
∴A×B={1,2,3}×{3,4}
and,
A×C={1,2,3}×{4,5,6}
={(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)}
∴(A×B)∪(A×C)={(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5),(3,6)}