If A(−1,4,−3) is one end of the diameter AB of the spere x2+y2+22−3x−2y+2z−15=0, then find the co-ordinates of B.
Open in App
Solution
The equation of the given sphere is x2+y2+z2−3x−2y+2z−15=0 2u= Co.efficient of x=−3⇒u=−32 2v= Co.efficient of y=−2⇒v=−22=−1 2w= Co.efficient of z=2⇒w=22=1 d=−15 ∴ centre is =(−u,−v,−w)=(−32,1,−1) Given one end of the diameter is A(−1,4,3) and centre (mid point of the diameter AB) is (−32,1,−1) Let the other end be B(x,y,z) x−12=32⇒x−1=2⇒x=4 x+42=1⇒y+4=2⇒y=−2 z−32=1⇒z−3=−2⇒z=1