If a1 < a2< a3 < a4 < a5 < a6, then the equation (x−a1)(x−a3)(x−a5)+2(x−a2)(x−a4)(x−a6) = 0 has
One real root in each interval ( ,), ( , ) and ( , )
f(x)=(x−a1)(x−a3)(x−a5)+2(x−a2)(x−a4)(x−a6) = 0
a1 < a2< a3 < a4 < a5 < a6
f( a1 ) = 2 (a1−a2)(a1−a4)(a1−a6)<0
f( a2 ) = 2 (a2−a1)(a2−a3)(a2−a5)>0
∴ at least one real root lies in (a1 ,a2 )
Similarly, at least one real root lies in each interval (a3 , a4 ) and (a5 , a6 )
But f(x) is cubic, therefore there are only three roots.
Hence, the equation f(x) = 0 has one real root in each interval (a1 ,a2 ), (a3 , a4 ) and (a5 , a6 )