If a1,a2,a3,....an are in A.P., where a1>0 for all i, then 1√a1+√a2+1√a2+√a3+....+1√an−1+√an is equal to
a1,a2,…….an are A.P. Where a1 > 0 for all i, then 1√a1+√a2+1√a2+√a3+....+1√an−1+√an
If a1,a2,a3.....an are in A.P. Where ai>0 for all i, then the value of 1√a1+√a2+1√a2+√a3+.........+1√an−1+√an=