If a1,a2,a3,.................,an are in H.P., then a1a2+a2a3+...........+an−1an will be equal to
Since a1,a2,a3,.................,an are in H.P.
Therefore 1a1,1a2,1a3.........1an will be in A.P.
Which gives 1a2−1a2 = 1a3−1a2 = ......... = 1an−1an−1 = d
⇒a1−a2a1a2 = a3−a2a2a3 =............= an−1−anan−1an = d
⇒a1−a2 = da1a2
a2−a3 = da2a3
....................
....................
and an−1−an = danan−1
Adding these, we get d(a1a2+a2a3+.........+an)
= (a1+a2+.......+an−1)−(a2+a3+......+an)
= a1−an ..............(i)
Also nth term of this A.P. is given by
1an = 1a1+(n−1)d⇒d = a1−ana1an(n−1)
Substituting this value of d in (i)
a1−an) = a1−ana1an(n−1)(a1a2+a2a3+.......+anan−1)
(a1a2+a2a3+...........+anan−1) = a1an(n−1).