The correct option is C n=7
If radius of circle is r then
A1A2=2rsin(πn)
A1A3=2rsin(2πn)
A1A4=2rsin(3πn)
∵1A1A2=1A1A3+1A1A4
⇒12rsin(πn)=12rsin(2πn)+12rsin(3πn)
⇒sin(2πn)sin(3πn)=sin(3πn)sin(πn)+sin(2πn)sin(πn)
⇒sin(2πn)[sin(3πn)−sin(πn)]=sin(3πn)sin(πn)
Using transformation angle formula, we get
⇒sin(2πn).2cos(2πn)sin(πn)=sin(3πn)sin(πn)
⇒2sin(2πn)cos(2πn)=sin(3πn)
Using multiple angle formula, 2sinAcosA=sin2A we get
sin(4πn)=sin(3πn)
∴4πn=r+(−1)r3n for r=1,n=7