If a1,a2,a3....,an is an A.P. with common difference d then tan[tan−1(d1+a1a2)]+tam−1(d1+a2a3)]+...+tan−1(d1+an−1an)]=
A
(n−1)da1+an
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(n−1)d1+a1an
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
nd1+a1an
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
an−a1an+a1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(n−1)d1+a1an We have tan−1(d1+a1a2)]+tam−1(d1+a2a3)]+...+tan−1(d1+an−1an)]==tan−1(a2−a11+a1a2)+tan−1(a3−a21+a2a3)+⋯+tan−1(an−an−11+an−1an)=(tan−1a2−tan−1a1)+(tan−1a3−tan−1a2)+.....+(tan−1an−tan−1an−1)=tan−1an−tan−1a1=tan−1(an−a11+ana1)=tan−1((n−1)d1+a1an).