If a1,a2,a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
tan[tan−1(d1+a1a2)+tan−1(d1+a2a3)+tan−1(d1+a3a4)+⋯+tan−1(d1+an−1an)]
We have, a1=a, a2=a+d, a3=a+2d
and d=a2−a1=a3−a2=a4−a3=⋯=an−an−1
Given that, tan[tan−1(d1+a1a2)+tan−1(d1+a2a3)+tan−1(d1+a3a4)+⋯+tan−1(d1+an−1an)]
=tan[tan−1a2−a11+a2.a1+tan−1a3−a21+a3.a2+⋯+tan−1an−an−11+an.a−n−1]=tan[(tan−1a2−tan−1a1)+(tan−1a3−tan−1a2)+⋯+(tan−1an−tan−1an−1)]=tan[tan−1an−tan−1a1]=tan[tan−1an−a11+an.a1] [∵ tan−1 x−tan−1 y−=tan−1(x−y1+xy)]=an−a11+an.a1 [∵ tan(tan−1 x)=x]