If a1,a2,a3..... are in A.P. such that a1+a5+a10+a15+a20+a24=225.
We know that the nth term of an AP is given by an=a1+(n−1)d
a1+a5+a10+a15+a20+a24=225
⇒a1+(a2+4d)+(a2+9d)+(a1+14d)+(a1+19d)+(a1+23d)=225
⇒6a1+69d=225 ……(1)
⇒3(2a1+23d)=225
⇒2a1+23d=2253=75……(i)
Now, we have to find
a1+a2+a3......+a23+a24=S24
∴S24=242[2a1+(24−1)d]
=12[2a1+23d]
=12×75=900 [Using eq.(i)]