If a1,a2,a3,.... are in A.P. then show that a1C0−a2C1+a3C2−......+(−1)nan+1Cn=0 Hence deduce that 3C0−8C1+13C2−18C3+....=0
Open in App
Solution
Let a1=aa2=a+d,....,an+1=a+nd. L.H.S=aC0−(a+d)C1+(a+2d)C2−......+(−1)n(a+nd)Cn =a{C0−C1+C2−....}−d{C1−2C2+3C3−....} =a0−d.0,=0 by Q. 1 Deduction : 3, 8 ,13 ,18,......form an A . P whose a=3,d=5 Putting a=3,d=5 we get the result 3.0−5.0=0